

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Regular & Supplementary Examinations Nov/Dec 2018 SIGNALS AND SYSTEMS

(Electronics and Communication Engineering)

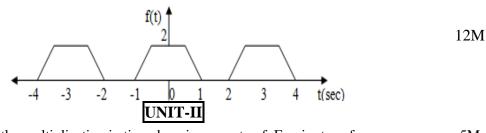
Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 a Test whether the signal is periodic or not. If so find the fundamental period


i)
$$x(t) = e^{j10t}$$
 ii) $x(t) = \cos(\frac{\pi}{3})t + \sin(\frac{\pi}{5})t$ 7M

iii)
$$x(t) = \cos(t + \frac{\pi}{4})$$

b Define a system .How are systems classified? Define each one of them.

OR

2 Find the exponential Fourier series by direct evaluation of coefficients.

3	a	State and prove the multiplication in time domain property of Fourier transforms	5M
	b	Obtain the fourier transform of	
		(i) $\operatorname{Sgn}(t)$	
		(ii) $\Delta(t) = \begin{cases} 1 - \frac{2 t }{\tau} \text{ for } t < \tau \\ 0 \text{elsewhere} \end{cases}$	7M
		(II) $\Delta(t) = \begin{cases} \tau & t \\ 0 & \text{elsewhere} \end{cases}$	
		OR	
4	a	Obtain the Fourier transform of the following functions:	714
		i) Impulse train ii) DC Signal iii) $\cos \omega_0 t$ iv) Gaussian Pulse	7M
	b	State and prove the Duality property of Fourier transforms	5M
		UNIT-III	
5	a	Given a signal $x(t) = 3\cos(50\pi t) + 10\sin(300\pi t) - \cos(100\pi t)$. Find the Nyquist rate	
		for this signal.	6M
	b	Define LTI system. Determine whether the following system is LTI system or not	6M
		y(t)=2x(t-1)	0111
		OR	
6	a	State and prove sampling theorem for low pass signals.	6M
	b	A signal $x(t) = 2\cos 400\pi t + 6\cos \pi t$ is ideally sampled at $f_s = 500$ Hz. If the sampled	
		signal is passed through an ideal low-pass filter with a cut-off frequency of 400 Hz, what	6M
		frequency components will appear in the filter output.	
		UNIT-IV	
7	a	Determine auto and cross correlation, Energy Spectral Density of the signal	5M
	_	$x(t)=A\sin(wt+\phi)$	0111

b Find auto correlation, power, RMS value and sketch the Power Spectral Density for the signal $x(t)=(A+\sin 100t)\cos 200t$. 7M

R16

5M

Pole zero locations of X(Z).

OR

a Prove that for a signal, auto correlation and Power Spectral Density form a Fourier 8 5M transform pair **b** Find the cross correlation between unit triangular and unit gate pulse as follows: 1 x(t) 7M UNIT-V a State and prove the initial value and final value theorem of Laplace Transform and 9 6M explain its significance in analyzing a system. **b** Determine the inverse Laplace transform of $X(S) = \frac{2(S+2)}{S^2+7S+12}$ Re(s) > -3. 6M **10 a** A finite sequence x[n] is defined as $x[n] = \{5,3,-2,0,4,-3\}$ Find X[Z] and its ROC. 6M **b** Determine Z- Transform of a signal $x(n) = (\frac{2}{3})^n u(n) + (-\frac{1}{2})^n u(n)$ and plot ROC and 6M

*** END ***